The Most Effective and Precise Identification of Airway Obstruction

SUCCESSFUL TREATMENT OF SNORING & SLEEP APNEA is based on the accurate identification of the pattern of airway obstruction. In the throat, there are four major areas that can be responsible: the palate, lateral pharyngeal wall, tongue, and epiglottis. Precise diagnosis allows for targeted and effective treatment.

During drug-induced sleep endoscopy, you will receive sedation administered by our anesthesiologist. As you begin to snore and have some blockage of your breathing, Dr. Zaghi will pass a flexible telescope through one side of your nose in order to evaluate your throat and observe the specific sites and patterns of airway obstruction.
EXAMINING THE UPPER AIRWAY

If you have Obstructive Sleep Apnea (OSA) and are considering treatment options, the key to a successful outcome is proper diagnosis to address the specific sites and levels of airway obstruction. In many patients, it is not possible to completely evaluate all of the anatomic areas responsible for airway narrowing, vibration (snoring), or complete obstruction (apnea) while you are awake. While an overnight sleep study is important for identifying the problem, Drug Induced Sleep Endoscopy (DISE) can be extremely insightful in:

- Precisely identifying site of obstruction
- Predicting response to oral appliance, CPAP, and surgery
- Demonstrating factors that interfere with use of CPAP
- Evaluation of mouth breathing vs. nasal breathing

With a thin flexible camera inserted through the nose, we are able to examine the entire upper airway and visualize the specific sites of obstruction- taking out the guess work. The information obtained will help determine which specific structures seem to be playing a major role in airway obstruction and which treatment option would have optimal success.

SOROUSH ZAGHI, MD

Dr. Zaghi graduated from Harvard Medical School and completed a 5-year residency training in Head and Neck Surgery at UCLA. He has completed fellowship training as Clinical Instructor of Maxillofacial-Sleep Surgery at Stanford University. The focus of his specialty training is on Maxillofacial Airway Reconstruction for the treatment of nasal obstruction, snoring, and obstructive sleep apnea. He is very active in clinical research relating to sleep disordered breathing with over 50 peer-reviewed journal articles relating to neuroscience, head and neck surgery, and obstructive sleep apnea.